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1. Introduction

The extension of the concepts and techniques of the Mathematical Programming of the Euclidean space R" to Riemannian
manifolds is natural. It has been frequently done in recent years, with a theoretical purpose and also to obtain effective
algorithms; see [1-9]. In particular, we observe that, these extensions allow the solving of some nonconvex constrained
problems in Euclidean space. More precisely, nonconvex problems in the classic sense may become convex with the
introduction of an adequate Riemannian metric on the manifold (see, for example [10]). The proximal point algorithm,
introduced by Martinet [11] and Rockafellar [12], has been extended to different contexts; see [4,6] and the references
therein. In [4], the authors generalized the proximal point method for solving convex optimization problems of the form

(P) minf(p)
st.peM, (1)

where M is a Hadamard manifold and f : M — Ris a convex function (in the Riemannian sense). The method was described
as follows:

) A

p**! := argmin {f ) + @, p")} , (2)
peM 2

with p° € M an arbitrary point, d the intrinsic Riemannian distance (to be defined later on) and {);} a sequence of positive

numbers. The authors also showed that this extension is natural. As regards to [6] the authors generalized the proximal

point method with Bregman distance to solve quasiconvex and convex optimization problems also on Hadamard manifold.
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Spingarn in [13] has, in particular, developed the proximal point method for the minimization of a certain class of non-
differentiable nonconvex functions, namely, the lower-C? functions defined in Euclidean spaces; see also [14]. Kaplan and
Tichatschke in [15] also applied the proximal point method for the minimization of a similar class of the ones of [14,13],
namely, functions defined as maximum of a certain collection (finite/infinite) of continuously differentiable functions. In[16]
we study, in the Riemannian context, the same class of functions studied in [15]. In that context we applied the proximal
point method (2) to solve the problem (1), however we assumed that the collection of functions defining the objective
function was finite.

Our goal is to extend the results of [16]. We consider that the objective function is given by the maximum of a collec-
tion infinite of continuously differentiable functions. To obtain the results in [16], it was necessary to study the generalized
directional derivative in the Riemannian manifolds context. In this paper we go further in the study of properties of the gen-
eralized directional derivative in order to analyze the convergence of the proximal point method. Several works have studied
such concepts and presented many useful results in the Riemannian optimization context; see for example [17,5,18,19].

The paper is divided as follows. In Section 2 we give the notation and some results on the Riemannian geometry which
we will use along the paper. In Section 3 we recall some facts of the convex analysis on Hadamard manifolds. In Section 4 we
present definition of generalized directional derivative of a locally Lipschitz function (not necessarily convex) which, in the
Euclidean case, coincides with the Clarke generalized directional derivative. Moreover, some properties of that derivative
are presented, amongst which the upper semicontinuity of the directional derivative. In Section 5 we study the proximal
point method (2) to solve the problem (1), in the case where the objective function is a real-valued function (non-necessarily
convex) on a Hadamard manifold M given by the maximum of a certain class of functions. Finally in Section 6 we provide
an example where the proximal point method for nonconvex problems is applied.

2. Notation and terminology

In this section we introduce some fundamental properties and notations on Riemannian geometry. These basic facts can
be found in any introductory book on Riemannian geometry, such as in [20,21].

Let M be an n-dimensional connected manifold. We denote by T,M the n-dimensional tangent space of M at p, by
TM = Upenm ToM tangent bundle of M and by X (M) the space of smooth vector fields over M. When M is endowed with
a Riemannian metric (, ), with the corresponding norm denoted by || ||, then M is now a Riemannian manifold. Recall that
the metric can be used to define the length of piecewise smooth curves y : [a, b] — M joining p to q, i.e., such that y (a) = p
and y (b) = q, by

b
() = f Iy (©Ollde.

and, moreover, by minimizing this length functional over the set of all such curves, we obtain a Riemannian distance d(p, q)
which induces the original topology on M. The metric induces a map f + gradf € X (M) which associates to each smooth
function on M its gradient via the rule (grad f, X) = df (X), X € X(M). Let V be the Levi-Civita connection associated to
(M, (,)). A vector field V along y is said to be parallel if V,,V = 0.If y’ itself is parallel we say that y is a geodesic. Given
that geodesic equation V¢’ = 0 is a second order nonlinear ordinary differential equation, then geodesic y = y,(., p)
is determined by its position p and velocity v at p. It is easy to check that ||y’|| is constant. We say that y is normalized if
[l¥'Il = 1.The restriction of a geodesic to a closed bounded interval is called a geodesic segment. A geodesic segment joining p
togin M is said to be minimal if its length equals d(p, q) and this geodesic is called a minimizing geodesic. If y is a curve joining
points p and q in M then, for each t € [a, b], V induces a linear isometry, relative to (, ), Py@y @ : Ty@M — T,M, the

so-called parallel transport along y from y (a) to y (t). The inverse map of P, 4, (1) is denoted by Py_(}])y(t) :T,oM — T, oM.
In the particular case of y is the unique curve joining points p and q in M then parallel transport along y from p to q is
denoted by Pyq : T,M — TyM.

A Riemannian manifold is complete if geodesics are defined for any values of t. Hopf-Rinow’s theorem asserts that if this
is the case then any pair of points, say p and g, in M can be joined by a (not necessarily unique) minimal geodesic segment.
Moreover, (M, d) is a complete metric space and bounded and closed subsets are compact. Take p € M. The exponential map
exp, : ,M — M is defined by exp, v = y,(1, p).

We denote by R the curvature tensor defined by R(X,Y) = VxVyZ — VyVxZ — Viy xiZ, with X, Y, Z € X (M), where
[X, Y] = YX — XY. Then the sectional curvature with respect to X and Y is given by K(X, Y) = (R(X, Y)Y, X)/(IXI?|I1X]I? —
(X, Y)?), where ||X|| = (X,X)2. IfK(X,Y) < 0 forall X and Y, then M is called a Riemannian manifold of nonpositive
curvature and we use the short notation K < 0.

Theorem 2.1. Let M be a complete, simply connected Riemannian manifold with nonpositive sectional curvature. Then M is
diffeomorphic to the Euclidean space R", n = dim M. More precisely, at any point p € M, the exponential mapping exp, :
T,M — M is a diffeomorphism.

Proof. See [20,21]. O
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A complete simply connected Riemannian manifold of nonpositive sectional curvature is called a Hadamard manifold. The
Theorem 2.1 says that if M is Hadamard manifold, then M has the same topology and differential structure of the Euclidean
space R". Furthermore, are known some similar geometrical properties of the Euclidean space R", such as, given two points
there exists a unique geodesic that joins them. In this paper, all manifolds M are assumed to be Hadamard finite dimensional.

3. Convexity in Hadamard manifold

In this section, we introduce some fundamental properties and notations of convex analysis on Hadamard manifolds
which will be used later. We will see that these properties are similar to those obtained in convex analysis on the Euclidean
space R". References to convex analysis on Euclidean space R" are in [22], and on Riemannian manifold are in[23,4,7,21,8,9].

The set £2 C M is said to be convex if any geodesic segment with end points in £2 is contained in §2. Let 2 C M be an
open convex set. A function f : M — R is said to be convex (respectively, strictly convex) on £2 if for any geodesic segment
y : [a, b] — $£2 the composition f o y : [a, b] — R is convex (respectively, strictly convex). Now, a functionf : M — R
is said to be strongly convex on £2 with constant L > 0 if, for any geodesic segment y : [a,b] — £2, the composition
f oy :la, b] = Ris strongly convex with constant L|y’(0)||>. Take p € M. A vector s € T,M is said to be a subgradient of f
atpif

F@ =)+ (s.exp, ' q),
for any g € M. The set of all subgradients of f at p, denoted by df (p), is called the subdifferential of f at p.
Take p € M. Let exp, 1. M — T,M be the inverse of the exponential map which is also C*. Note that d(q, p) =

|l exp,* qll, the map d*(., p): M — Ris C* and

grad %dz (q.p) = —exp, ' p,
(remember that M is a Hadamard manifold); see, for example, [21].
Proposition 3.1. Take p € M. The map d*(., p)/2 is strongly convex.
Proof. See [23]. O

Definition 3.1. Let 2 C M be an open convex set. A function f : M — R is said to be Lipschitz on 2 if there exists a
constant L := L(£2) > 0 such that

f(p) —f@l =Ldp.q), p,q€ . (3)

Moreover, if it is established that for all py € §2 there exists L(pp) > 0and § = §(pg) > 0 such that the inequality (3) occurs
with L = L(pg) for all p, g € Bs(po) := {p € 2 : d(p, po) < &}, then f is called locally Lipschitz on £2.

Remark 3.1. As an immediate consequence of the triangular inequality we obtain that |d(p, po) — d(q, po)| < d(p, q) for all
p, qand pg € M. Then, of Definition 3.1, we get that the Riemannian distance function to a fixed point, d(-, q) is Lipschitzian
and therefore Lipschitzian locally. In fact, it is well known that every convex function is locally Lipschitz and consequently
continuous. See [24].

Proposition 3.2. Let 2 C M be an open convex set, f : M — R and p € M. If there exists A > 0 such that f + (x/2) d*(., p) :
M — R s convex on £2, then f is Lipschitz locally on 2.

Proof. Because f + (A/2) d?(., p) is convex, it follows from Remark 3.1 that for any p € £2 there exist Ly, §; > 0 such that

|If (@1) + (A/2) (g1, P)] — [f(q2) + (4/2) d*(q2. P)]| < L1d(q1.G2). Y q1. G2 € B(P, 81). (4)
Moreover, Proposition 3.1 together with Remark 3.1 imply that there exist L,, §; > 0 such that
1(1/2)d* (g1, p) — (1/2)d*(q2, p)| < Lod(q1, G2), VY g1, G2 € B®, 81). (5)

Simple algebraic manipulations imply that

f (@) — F(@)] < |If(@1) + (1/2) d* (@1, )] — [f (@2) + (/2) d*(q2. D)]| + |(A/2) (g2, P) — (A/2) d*(q1. )| -
Therefore, taking § = min{§1, 8,}, using (4) and (5) we conclude from the last inequality that

If(@1) — f(@2)| < (L1 + AL2)d(q1, G2), ¥ q1,q2 € B(P, 9),
and the proofis finished. O

Definition 3.2. Let 2 C M be an open convex set and f : M — R a continuously differentiable function on §2. The gradient
vector field grad f is said to be Lipschitz with constant I" > 0 on £2 always that

| gradf(q) — Ppggradf(p)|l = I'd(p, q), p.q € £2,
where P, is the parallel transport along the geodesic segment joining p to q.
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4. Generalized directional derivatives

In this section we present definitions for the generalized directional derivative and subdifferential of a locally Lipschitz
function (not necessarily convex) which, in the Euclidean case, coincide with the Clarke generalized directional derivative
and subdifferential, respectively. Moreover, some properties of those concepts are presented, amongst them the upper
semicontinuity of the directional derivative and a relationship between the subdifferential of a sum of two Lipschitz locally
function (in the particular case that one of them is differentiable) and its subdifferentials.

Definition 4.1. Let 2 C M be an open convex set and f : M — R a locally Lipschitz function on §2. The generalized
directional derivative f° : T2 — R of f is defined by

f(expgt(Dexpp).,-1,v) —f(@
f°(p, v) == limsup ( ! ? pplq)

£10 g—p t

(6)

where (D expp)exp;1 q denotes the differential of exp,, at exp, Iq.
It is worth to pointed out that an equivalent definition has appeared in [17].

Remark 4.1. The generalized directional derivative is well defined. Indeed, let L, > 0 the Lipschitz constant of f in p and
8 = 8(p) > 0such that

If(equt(Dexpp)expp—lqv) —f@l =L d(equt(Dexpp)Expp—lqv, 9, q€Bs(p), tel0,3).

Because d(exp, t(D expp)expgl gV q) =t||(D expp)expgl qv||, the above inequality becomes

If (exPg £(D €XPp) 1 V) — F(D] = Lp LI (D €XPp)eyy1 vl 4 € Bs(p), t €10, 9).

Since limg_,, (D €xpp),,,~1,V = v our statement follows from the last inequality.

expy  q
Remark 4.2. Note that, if M = R" then exp, w = p + w and (D expp)exp;1 V=0 In this case, (6) becomes
. +tv) —
0. v) — limsup AV =F@
t}0 g—p t

which is the Clarke generalized directional derivative; see [25]. Therefore, the generalized differential derivative on
Hadamard manifold is a natural extension of the Clarke generalized differential derivative.

Now we are going to prove the upper semicontinuity of the generalized directional derivative. The following result will
be useful.

Lemma 4.1. Let ¢; and ¢, be a C? curvesin M, such that ¢;(0) = c;(0) = p, c1(0) = vand ¢4 (0) = w.If ¥ (s) = d(c1(5), c2(5)),
then the Taylor's Formula for vr? in some neighborhood of s = 0 is given by
Y2(s) = [|lw — v’ 4+ 0(s?), lim 0(s?)/s® = 0.
s—0

Furthermore, limg_, o+ d(c1(5), c2(5)) /s = |lw — v].
Proof. See Lemma 3.2 and Corollary 3.1 0f [26]. O

Proposition 4.1. Let 2 C M be an open convex set and f : M — R be a locally Lipschitz function. Then, f° is upper
semicontinuous on T2, i.e., if (p, v) € T$2 and {p*, v*} is a sequence in T2 such that lim_ 4o (p*, v¥) = (p, v), then

limsup f°(p*, v*) < f°(p, v). @)

k—+o00

Proof. Let (p, v) € T£2 and {(p*, v¥)} C T£2 such that limy_, 1o, (p*, v¥) = (p, v). For proving the inequality (7) first note
that for each k
exp,tw) —
P < limsyp [P /@

(q,w) e TS2.
£40 (g,w)— (oK, vk) t

So, by definition of upper limit, there exists (¥, w*) € T£2 — {(p*, v*)} and t; > 0 such that

. 1 flexpg tew®) — f(q) - 1
f@wﬂ—ﬁ< q‘t : dmﬁwxwwm+u<?
k
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with d being the Riemannian distance in TM. Let U, C $2 be a neighborhood of p such that TU, =~ U, x R" and f is Lipschitz
in U, with constant L,. From the first inequality in (8), we obtain

1 T (e tDexpy) g ¢ 0) < F@) F(exPg ) — f (eXDye (D eXB,) 1 v
f (p , U )_ - < + . (9)
k tk Lk
On the other hand, as lim;_, ;.o (p*, v¥) = (p, v), we conclude from the second inequality in (8) that
expy twk e Up, expgk tk(D epr)epr—l FURS Up, k> ko,
for ko sufficiently large. Thus, because f is Lipschitz in Uy, for k > ko we have
‘f(equk tew®) — f (eXqu t(D EXDp)exp;1 o U)‘ <L,d (eXqu tew*, expy ti(D expp)exp;1 o v) . (10)
Since limy_, 4« p* = p, second equation in (8) imply that lim;_, ,, g = p. Thus, we conclude that lim;_, o, (D expp)exp;1 aV

= v which together with Lemma 4.1 and limy_,  « ty = 0 implies

: I
kl:r-il:lood (equk tew”, expgx t(D expp)exp;1 o v) /tk =0.
Therefore, combining the last equation, (9), (10), and Definition 4.1 the result follows. O

Lemma4.2. Let f, g : M — R be locally Lipschitz functions at p € M and v € T,M. Then
F+8)°@,v) =f°(p,v) +8° M, v).

Proof. From the definition of the generalized directional derivative we have

(f + &) (expg t(Dexpy),,,1,0) — (f +8)(Q)

(f +2)°(p, v) = limsup ,
t10 g—p t

which immediately implies that

[f (exPg £(D eXPp)ey,1v) —F(@)  g(expg t(Dexpy) ey, 1,0) —8(4) }
+ :

(f +2)°(p, v) = limsup

tl0 g—p t t

Therefore, the result follows by using simple upper limit properties together with the definition of the generalized
directional derivative. 0O

Next we generalize the definition of subdifferential for locally Lipschitz functions defined on Hadamard manifold.

Definition 4.2. Let 2 C M be an open convex set and f : M — R a locally Lipschitz function on 2. The generalized
subdifferential of f at p € £2, denoted by 0°f (p), is defined by

3°f(p) = {w e M : f°(p, v) = (w,v),¥Yv e T,M}.

Remark 4.3. Let 2 C M be an open convex set. If the function f : M — R is convex on 2, then f°(p, v) = f'(p, v)
(respectively, 0°f(p) = df(p)) for all p € £2, i.e,, the directional derivatives (respectively, subdifferential) for Lipschitz
functions is a generalization of the directional derivatives (respectively, subdifferential) for convex functions. See [17]
Claim 5.4 in the proof of Theorem 5.3.

Definition 4.3. Let f : M — R be locally Lipschitz function. A point p € £2 is said to be a stationary point of f always
0 € 9°f (p).

Proposition 4.2. Let f : M — R be locally Lipschitz functionat p € M, A > 0 and p € M. Then,

0°(f + (/2d (. ) (P) C 8°F(p) — hexp, ' p.

Proof. Take w € 3°(f + (L/2)d*(., p))(p). Then,
(w,v) < (F + A/ PP, v), YveTM.
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Because A > 0 it follows from Proposition 3.1 that the functionp 3 M — (x/2)d?(p, p) is convex. Thus, Remarks 3.1, 4.3,
Lemma 4.2 and the above inequality imply that
(w, v) < f°(p,v) + (/2. §) (p,v), Vv eT,M.

On the other hand, asp 3 M + (1/2)d*(p, p) is differentiable with grad(i/2)d*(p, p) = —2exp, ' p, the last inequality
becomes

(w,v) < f°(p,v) — (hexp, ' p,v), VveTM,
which implies that w + A expgl p € 0°f(p).Sow € 3°f(p) — A expp‘l p and the proof is concluded. O
Corollary 4.1. Let 2 C M be an open convex set, f : M — R be locally Lipschitz functions on £2,p € M and A > 0 such that
f+(/2)d*(.,p) : M — Ris convex on 2. If p € 2 is a minimizer of f + (A/2)d?(., p) then

rexp, ' p e d°f(p).

Proof. Since p is a minimizer of f 4+ (1/2)d?(., p) we obtain
Ao
0e€od f—l—Ed D) (.
On the other hand, as f + (A/2) d?(., p) is convex on £2, applying Proposition 4.2 we have
A 2 = ) A 2 = o -1z
a\f+ Ed D) =0°(f+ Ed (. D)) () C°f(p) — rexp, P.
Therefore, the result follows by combining two latter inclusions. O

5. Proximal point method for nonconvex problems

In this section we present an application of the proximal point method for minimizing a real-valued function (non-
necessarily convex) given by the maximum of a certain class of continuously differentiable functions. Our goal is to prove
the following theorem:

Theorem 5.1. Let 2 C M be an open convex set,q € Mand T C R a compact set. Let ¢ : M x T — R be a continuous function
on 2 x T such that ¢(., T) : M — R is a continously differentiable function of §2 and continuous on £2 (closure of $2), for all
t € T,andf : M — R defined by

fp) = max o, 7).

Assume that —oo < infyeym f(p), grad, ¢(., T) is Lipschitz on §2 with constant L, for each T € T such that sup,cr L, < +00
and

Li(f(@) ={peM:f(p) =f(@} C L2, pig&f(P) <f(@.

Take 0 < X and a sequence {\,} satisfying Sup,cr Ly < A < handp Ls (f (@)). Then the proximal point method

A
w“:mmmp@+k¥mwﬁ,k=anm, (11)
peM 2

with starting point p° = p is well defined, the generated sequence {p*} rests in Ly (f (q)) and satisfies only one of the following
statements

(i) {p*} is finite, i.e., p**1 = p* for some k and, in this case, p* is a stationary point of f,
(i) {p*} is infinite and, in this case, any cluster point of {p*} is a stationary point of f.

Moreover, assume that the minimizer set of f is non-empty, i. e.,
(h1) U* ={p: f(p) = infrem f (D)} # 0.
Let ¢ € (infyem f (), f(q)). If, in addition, the following assumptions hold:

(h2) Ls(c) is convex and f is convex on Ly (c) and ¢(., ) is continuous on 2 the closure of 2 for t € T;
(h3) thereexist p € M and 0 < ju < A such that f + (;u/2)d*(., p) is convex and

ly®l >8>0, ¥YpelL(@)\L©), Vyp) €d(f+ u/2d (. p) @) + mwexp,"p,
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then the sequence {p*} generated by (11) with
max{p,,maIxL,-} <M<Xx k=0,1,... (12)
1€
converges to a point p* € U*.

Remark 5.1. The continuity of each function ¢(., 7) on £2 in (h2) guarantees that the level sets of the function f, in particular
the solution set U*, are closed in the topology of the manifold M.

In the next remark we show that if £2 is bounded and ¢(., t) is convex on £2 and continuous on £2 for all T € T then f
satisfies the assumptions (h2) and (h3).

Remark 5.2. If ¢(., 7) is a convex function on £2 and continuous in £2 for all ¢ € T then the assumption (h2) is naturally
verified and if (h1) hold then (h3) also holds. For details, see [16].

In order to prove the above theorem we need some preliminary results. From now on we assume that every assumptions
on Theorem 5.1 hold, with the exception of (h1), (h2) and (h3), which will be considered to hold only when explicitly stated.

Lemma 5.1. For all p € M and X satisfying
supL; < A,

teT
function f + (A/2)d?(., p) is strongly convex on §2 with constant A — sup,r L;.

Proof. Since T is compact and ¢ is continuous the well definition of f follows. To conclude, see Lemma4.1in[16]. O

Corollary 5.1. The proximal point method (11) applied to f with starting point p° = p is well defined.

Proof. Since compactness plays no rule, the proof is equal to the proof of Corollary 4.1in[16]. O

Lemma 5.2. Let {p*} be the sequence generated by the proximal point method (11). Then

(i)0ed (f + %dz(.,pk)) @, k=0,1,....

(i) limy_, o d(p**1, p¥) = 0.

Moreover, if Ay satisfies (12) and (h1), (h2) and (h3) hold, then {p*} converges to a point p* € U*.

Proof. Since compactness plays no rule, the proof is similar to the proof of Lemma 4.2, 4.3 and 4.4 of [16]. O

Proof of Theorem 5.1. The well definition of the proximal point method follows from the Corollary 5.1. Let {p*} be the
sequence generated by proximal point method. Because p® = p € Ly (f(q)), (11) implies that the whole sequence is in
Ly (f(q)). From Lemma 5.2 item (i) we have

A
0ed (f + Ekdz(.,p")> @Y, k=0,1,....

Since sup,.rL; < Ay, Lemma 5.1 implies that f + (A/2)d?(., p*) is strongly convex on £2, which together with
Proposition 3.2 give us that f is locally Lipschitz in £2. So, using the definition of p**! we conclude from Corollary 4.1 with
A=A D =pand p = p**! that

hexp il p e 3 (). (13)

If {p*} is finite, then p**! = p* for some k and the latter inclusion implies that 0 € 3°f (p**1), i.e., p* is a stationary point of
f. Now assume that {p*} is a infinite sequence. If p is a cluster point of {p*}, then there exists a subsequence {p*} such that
limy_, 1o p*! = p and Lemma 5.2 item (ii) implies

Jim [l exp. pll = Jim dp*", p) = 0. (14)
Now, the relation (13) implies that

Fo@t, v) = Ay (exp;{:H ph.v), Y€ TrnM.
Let v € T;M. Hence, the latter inequality implies that

FosT, uR ) > A (EXP;;H ps, oty ket = D(exp;)

expgl phs+1U-
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Note that lims_, 1o p*! = p implies lim,_, 10 v = . Because {Ak} is bounded, letting s goes to 400 in the last
inequality, Proposition 4.1 together with (14) gives us

fo@,v) > lim supf°(pst!, vty > o,
$—+00

which implies that 0 € 9°f (p), i.e., p is a stationary point of f and the first part of the theorem is concluded.
The second part follows from the last part of Lemma 5.2 and the proof of the theorem is finished. O

6. Example

Let (R4, {, )) be the Riemannian manifold, where Ry, = {x € R : x > 0} and (, ) is the Riemannian metric (u, v) =
g(x)uv withg : R, — (0, +00). So, the Christoffel symbol and the geodesic equation are given by

d d d2x dx\?
re =5 0% = L inaw, dz+r<>(’t‘) o,

respectively. Be51des, in relation to the twice differentiable function h : R, — R, the Gradient and the Hessian of h are
given by

gradh=g 'h, hessh=h"—-Tl,

respectively, where h’ and h” denote the first and second derivatives of h in the Euclidean sense. For more details see [9].

So, in the particular case of g(x) = x~2,

I'(x)=—x"', gradh(x) =x*h'(x),  hessh(x) = h"(x) +x~'h'(x). (15)

Moreover, the map v : R — R, defined by 1/ (x) = e* is an isometry between the Euclidean space R and the manifold
(R4, (,)) and the Riemannian distance d : Ry x Ry, — R, is given by

dex,y) = ¥ '®) — ¥~ = [In(x/y)], (16)
(see, for example [10]). Therefore, (R, {, }) is a Hadamard manifold and the unique geodesic x : R — R with initial
conditions x(0) = x¢ and X' (0) = v is given by

x(t) = xpeV/X)t,
Now letfi, fo,f : R4y — Rand ¢ : Ry x [0, 1] — R be real-valued functions such that
px, 1) =) +t(h® - fik), f&) = max w(x ), (17)

and consider the problem

min f (x)
s.t.x € R++ .

Take a sequence {A,} satisfying 0 < Ay. From (16), the proximal point method (11) becomes

Paal —argm1n{f(x)+ % In 2( k)} k=0,1,....
P

XER 4+
If f; and f, are given, respectively, by f;(x) = In(x) and fo(x) = —In(x) + e 2* — e2 then ¢ is continuous and ¢(., T) is
continuously differentiable for each t € [0, 1]. The last expression in (15) implies that
hess f(x) = 0, hessfo(x) = (4 —2/x)e %, xe R, (18)

as a consequence, first equation in (17) gives us
hessy ¢(x, ) = T hess f,(x), VxeR,, V7 el0,1].

Note that, for0 < € < 1/4and 2 = (€, +00), hess f, is bounded on £2 and therefore grad f, is Lipschitz on 2. We denote by
L the constant of Lipschitz of grad f,. From the last equality hess, ¢(., ) is also bounded on £2 and grad, ¢(., t) is Lipschitz
on §2 with constant L, = tLforall t € [0, 1]. Besides, sup, o 1) L: =L < +o0.

We claim that f (x) = max;j=1,, fj(x). Indeed, note that f,(x) — fi(x) > 0 forx € (0, 1), f2(x) — fi(x) < 0forx € (1, +00)
and f1(1) = f,(1). Thus the affine function [0, 1] > 7 — @(x, T) satisfies

iﬁ(x), x e (0,1),
LX), xe(,+00)

and the claim follows. With that characterization for f all assumptions of Theorem 5.1 are verified, with ¢ = 5/16,
= f(3/4) and § = 2/5; see Example in [16]. Hence, letting xX° € Ry, and A > O such that X € L;(f(q)) and

L < u < A < A, the proximal point method, characterized in Theorem 5.1, can be applied for solving the above nonconvex
problem.

max X, T
7€[0,1] (/)( )
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Remark 6.1. Function f(x) = max; ¢(x, 7), in the above example, is nonconvex (in the Euclidean sense) when restricted
to any open neighborhood containing its minimizer x* = 1. Therefore, the local classical proximal point method (see [15])
cannot be applied to minimize that function. Also, as f is nonconvex in the Riemannian sense, the Riemannian proximal
point method (see [4]) cannot be applied to minimize that function; see Example in [ 16] for more details.

7. Final remarks

We have extended the range of application of the proximal point method to solve nonconvex optimization problems
on Hadamard manifold in the case that the objective function is given by the maximum of a certain infinite collection of
continuously differentiable functions. Convexity of the auxiliary problems is guaranteed with the choice of appropriate
regularization parameters in relation to the constants of Lipschitz of the field gradients of the functions which they compose
the class in question. As regards Theorem 5.1, in the particular case where ¢(., t) is convex for T € T, convexity of the
auxiliary problems is guaranteed without the need of restrictive assumptions on the regularization parameters. Besides, as
observed in Remark 5.2, the additional assumptions (h2) and (h3) are satisfied whenever §2 is bounded.
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