Publications

Articles in Academic Journals  (Scholar Google Citations click here)

85. ANDREANI, R.; COUTO, K. R.; FERREIRA,O. P.; HAESER, G. Constraint Qualifications and Strong Global Convergence Properties of an Augmented Lagrangian Method on Riemannian Manifolds, SIAM J. Optim.,  34(2), p. 1799–18251, 2024 (pdf).

84. DÍAZ MILLÁN, R., FERREIRA, O. P.; UGON,  J.; Extragradient method with feasible inexact projection to variational inequality problem, Comput. Optim. and Appl., to appear 2024 (pdf)

83. FERREIRA, O. P.; R. A. L. RABELO; P. H. A. RIBEIRO;  SANTOS, E. M.; SOUZA, J. C. O; Image denoising with a non-monotone boosted DCA for non-convex models, Computers and Electrical Engineering,  v. 117, Paper No. 1093062024, 2024 (pdf).

82. FERREIRA, O. P.; SANTOS, E. M.; SOUZA, J. C. O; A boosted DC algorithm for non-differentiable DC components with non-monotone line search,Comput. Optim. and Appl., v. 88,  p. 783-818, 2024(pdf).

81. FERREIRA, O. P.; GAO, Y.; NÉMETH, S. Z;  & RIGÓ, P. R.; Gradient projection method on the sphere, complementarity problems and copositivity, J. Global Optim.,v.90, p. 1-25, 2024 (pdf).

80. BERGMANN, R.; FERREIRA, O. P.; SANTOS, E. M.; SOUZA, J. C. O; The Difference of Convex Algorithm on Hadamard Manifolds, J. Optim. Theory Appl., v. 201, p.221-251, 2024(pdf).  

79. DA SILVA JUNIOR, P. C., FERREIRA, O. P., SECCHIN, L. D., SILVA, G. S.; Secant-inexact projection algorithms for solving a new class of constrained mixed generalized equations problemsJ. Comput. Appl. Math., v. 440,  Paper No. 115638, 2024.

78.  ASSUNÇÃO, P. B., FERREIRA, O. P.; PRUDENTE, L. F.; A generalized conditional gradient method for multiobjective composite optimization problems Optimization,  to appear 2024 ((pdf) [PDFCodes]

77. FERREIRA, O. P.; NÉMETH, S. Z; ZHOU, JINZHEN. Convexity of sets and quadratic functions on the hyperbolic space,  J. Optim. Theory Appl., v. 202, p. 421–455,  2024 (pdf).

76. FERREIRA, O. P.; NÉMETH, S. Z; GAO, Y. Reducing the projection onto the monotone extended second-order cone to the pool-adjacent-violators algorithm of isotonic regression, Optimization, v. 73, n.2,  p.251-265, 2024 (pdf).


75. FERREIRA, O. P.; NÉMETH, S. Z; ZHOU, JINZHEN. Convexity of Non-homogeneous Quadratic Functions on the Hyperbolic Space,  J. Optim. Theory Appl.,v 199, p.1085-1105,2023 (pdf).

74. DÍAZ MILLÁN, R., FERREIRA, O. P.; UGON,  J.; Approximate Douglas-Rachford algorithm for two-sets convex feasible problems, J. Global Optim, v. 86, p. 621-636, 2023 (pdf).

73. FERREIRA, O. P.; GRAPIGLIA,G. N.; SANTOS, E. M.; SOUZA, J. C. O; .A subgradient method with non-monotone line search, Comput. Optim. and Appl., v. 84, n. 1,  p. 397-420, 2023 (pdf).

72. AGUIAR, A. A.; FERREIRA, O. P.; PRUDENTE, L. F. Inexact gradient projection method with relative error tolerance, Comput. Optim. and Appl., v. 84, n. 1,  p. 363-395, 2023 (pdf).

71. FERREIRA, O. P.;  JEAN-ALEXIS, CÉLIA; PIÉTRUS, ALAIN; SILVA, G. N.  On Newton’s method for solving generalized equations, J. Complexity, v. 74, Paper No.101697, 17 pp,  2023 (pdf).


70.  FERREIRA, O. P.; M. LEMES;  PRUDENTE, L. F.. On the inexact scaled gradient projection method, Comput. Optim. and Appl., v. 81, n. 1,  p. 91-125, 2022. (pdf).

69.   BORTOLOTI, M. A.de A.; FERNANDES, T. A. ; FERREIRA, O. P.. An efficient damped Newton-type algorithm with globalization strategy on Riemannian manifolds, J. Comput. Appl. Math., v. 403, Paper No. 113853, 15 pp,  2022. (pdf).

68.  AGUIAR, A. A.; FERREIRA, O. P.; PRUDENTE, L. F.. Subgradient method with feasible inexact projections for constrained convex optimization problems, Optimization, v.71, n.12, 3515-3537,  2022. (pdf)[Codes].

67.  FERREIRA, O. P.; SOSA, W. S.. On the Frank–Wolfe algorithm for non-compact constrained optimization problems, Optimization,v.71, n.1, p. 197-211, 2022.(pdf).


66.  DÍAZ MILLÁN, R; FERREIRA, O. P.; PRUDENTE, L. F.. Alternating conditional gradient method for convex feasibiliy problems, Comput. Optim. and Appl., v. 80, n. 1,  p. 245-269, 2021. (pdf).

65.  ASSUNÇÃO, P. B., FERREIRA, O. P.; PRUDENTE, L. F.. Conditional gradient method for multiobjective optimization Comput. Optim. and Appl.,   v. 78, n. 3,  p. 741-768, 2021. (pdf)[Codes].


64. BATISTA, E. E. A. ; BENTO, G. C.; FERREIRA, O. P.. An extragradient-type algorithm for variational inequality on Hadamard manifolds,  ESAIM: COCV, v. 26, n. 63, p.1-16,  2020 (pdf). 

63. FERREIRA, O. P.; NÉMETH, S. Z; XIAO, L.. On the Spherical Quasi-convexity of Quadratic Functions on Spherically Subdual Convex Sets J. Optim. Theory Appl., v. 187, n. 1,  p. 1–21, 2020.(pdf).

62. DE OLIVEIRA, F. R.; FERREIRA, O. P.. Newton Method for Finding a Singularity of a Special Class of Locally Lipschitz Continuous Vector Fields on Riemannian Manifolds;  J. Optim. Theory Appl., v. 185, n. 2,  p. 522–539, 2020.

61. FERREIRA, O. P; LOUZEIRO, M. S.; PRUDENTE, L. F.. Iteration-complexity and asymptotic analysis of steepest descent method for multiobjective optimization on Riemannian manifolds J. Optim. Theory Appl., v. 184, n. 2,  p. 507–533, 2020, [Fortran 90_Codes]. 

60. DE OLIVEIRA, F. R.; FERREIRA, O. P.. Inexact Newton method with feasible inexact projections for solving constrained smooth and nonsmooth equations,   Appl. Numer. Math.,v. 156, p. 63-76,  2020.

59. BORTOLOTI, M. A.de A., FERNANDES, T. A. ; FERREIRA, O. P. ; YUAN, J. Y.. Damped Newton’s method on Riemannian manifoldsJ. Global Optim., v. 77(3),  p. 643-660,  2020.


58. FERREIRA, O. P; LOUZEIRO, M. S.; PRUDENTE, L. F..Gradient Method for Optimization on Riemannian Manifolds with Lower Bounded Curvature, SIAM J. Optim.,  29(4), p. 2517–2541, 2019, [MatLab_Codes].

57. DE OLIVEIRA, F. R.; FERREIRA, O. P.; SILVA, G. N. Newton’s method with feasible inexact projections for solving constrained generalized equations, Comput. Optim. and Appl.,   v. 72, n. 1, p. 159-177, 2019.  (pdf).

56. FERREIRA, O. P.; NÉMETH, S. Z; XIAO, L. On the spherical quasi-convexity of quadratic functions Linear Algebra and  Appl., v.562, n. 1,  p. 205-222, 2019. (pdf).

55. FERREIRA, O. P.; NÉMETH, S. Z. On the spherical convexity of quadratic functions J. Global Optim.  v. 73, n. 3, p. 537-545, 2019. (pdf).

54. FERREIRA, O. P.; LOUZEIRO, M. S.; PRUDENTE, L. F. Iteration-complexity of the subgradient method on Riemannian manifolds with lower bounded curvature, Optimization,v.68, n.4, p. 713-729 , 2019. (pdf).

53. FERREIRA, O. P.; SILVA, G. N. Inexact Newton's method to Nonlinear function with values in a cone, Applicable Analysis, v. 98, n.8, p. 1461-1477, 2019. (pdf)


52. FERREIRA, O. P.; SILVA, G. N. Local convergence analysis of Newton’s method for solving strongly regular generalized equations J. Math. Anal. Appl., v.458, n.1, p.481-496, 2018 (pdf).

51. BENTO, G. C.; FERREIRA, O. P.; SOUBEYRAN, A.;  SOUSA JUNIOR, V. Inexact Multi-Objective Local Search Proximal Algorithms: Application to Group Dynamic and Distributive Justice Problems, J. Optim. Theory Appl., v. 177, n. 1,  p. 181-200, 2018. (pdf).

50. FERREIRA, O. P.; NÉMETH, S. Z.. How to project onto extended second order cones, J. Global Optim. v. 70, n. 4, p. 707–718, 2018(pdf).

49. BENTO, G. C.; FERREIRA, O. P.; SOUSA JUNIOR, V. L. Proximal point method for a special class of nonconvex multiobjective optimization problem, Optim. Lett., v. 12, p. 311–320, 2018. (pdf). 

48. BENTO, G. C.; FERREIRA, O. P.; PEREIRA, Y. R. L. Proximal Point Method for Vector Optimization on Hadamard Manifolds,Operations Research Letters, v.46, n.1, p.13–18, 2018,  (pdf).


47. FERREIRA, O. P.; SILVA, G. N. Kantorovich's theorem on Newton's method for solving strongly regular generalized equation,  SIAM J. Optim., v.27 (2), p. 910-926, 2017.(pdf).

46.FERREIRA, O. P.;   JEAN-ALEXIS, CÉLIA; PIÉTRUS, ALAIN . Metrically regular vector field and iterative processes for generalized equations in Hadamard manifolds,J. Optim. Theory Appl., v.175, n.3,  p. 624-651, 2017. (pdf). 

45. FERNANDES, T. A. ; FERREIRA, O. P. ; YUAN, J. Y. . On the Superlinear Convergence of Newton's Method on Riemannian Manifolds. J. Optim. Theory Appl., v.173, n.3,  p. 828-843, 2017. (pdf).

44. BENTO, G. C. ; FERREIRA, O. P. ; MELO, J. G. . Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds. J. Optim. Theory Appl., v. 173, n.2, p. 548–562, 2017. (pdf).

43. BELLO CRUZ, J. Y.;  FERREIRA, O. P.; NÉMETH, S. Z; PRUDENTE, L. F. A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone, Linear Algebra and  Appl.,  v.513, p. 160-181, 2017. (pdf), [MatLab_Codes].

42. BITTENCOURT, T. ; FERREIRA, O. P. Kantorovich's theorem on Newton's method under majorant condition in Riemannian manifolds, J. Global Optim., v. 68, n.2, p.387-411,  2017. (pdf).


41. BATISTA, E. E. A. ; BENTO, G. C.; FERREIRA, O. P. Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds, J. Optim. Theory Appl.,  v.170, n. 3, p. 916-931, 2016 (pdf).

40. BELLO CRUZ, J. Y.; FERREIRA, O. P.; PRUDENTE, L. F.  On the global convergence of the inexact Newton method for absolute value equation, Comput. Optim. and Appl., v. 65, n. 1,  p. 93-108, 2016. (pdf), [MATLAB_codes].

39. BARRIOS, J. G. ; BELLO CRUZ, J. Y.; FERREIRA, O. P.; NÉMETH, S. Z.  A semi-smooth Newton method for a special piecewise linear system with application to positively constrained convex quadratic programming, J. Comput. Appl. Math.v.301,  p. 91-100, 2016. (pdf). MATLAB_codes.


38. BATISTA, E. E. A. ; BENTO, G. C.; FERREIRA, O. P. An existence result for the generalized vector equilibrium problem on Hadamard manifolds, J. Optim. Theory Appl.,  v.167, n. 2, p. 550-557, 2015. (pdf).

37. BARRIOS, J. G. ; FERREIRA, O. P.; NÉMETH, S. Z.  Projection onto simplicial cones by Picard's method, Linear Algebra and  Appl., v. 480,  p. 27-43, 2015. (pdf). MATLAB_codes.

36. BITTENCOURT, T. ; FERREIRA, O. P. .Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian Manifolds, Appl. Math. and Comp.,  v. 261, n. 15, p. 28-38, 2015. (pdf).

35. FERREIRA, O. P. A robust semi-local convergence analysis of Newton's  method for cone inclusion problem in Banach spaces under affine invariant majorant condition, J. Comput. Appl. Math., v.279, n. 3, p. 318–335, 2015. (pdf).

34. BENTO, G. C. ; FERREIRA, O. P. ; OLIVEIRA, P. R. .Proximal Point Method for a Special Class of Nonconvex Functions on Hadamard Manifolds, Optimization, v.64, n. 2, p. 289-319, 2015. (pdf).

33. FERREIRA, O. P.; NÉMETH, S. Z.. Projection onto a simplicail cones by a semi-smooth Newton method, Optim. Lett., v. 9, n. 4,  p. 731-741, 2015. (pdf).


32. FERREIRA, O. P.; IUSEM, A. N.; NÉMETH, S. Z. . Concepts and techniques of Optimization  on the sphere, TOP, v. 22, n. 3, p. 1148-1170, 2014. (pdf).


31. FERREIRA, O. P. ; GONÇALVES, M. L. N. ; OLIVEIRA, P. R. . Convergence of the Gauss-Newton method for convex composite optimization under a majorant condition, SIAM J. Optim., v. 23, p. 1757-1783, 2013.(pdf).

30. CRUZ NETO, J. X. ; Da SILVA, G. J. P.; FERREIRA, O. P. ; LOPES, J. O. .A subgradient method for multiobjective optimization, Comput. Optim. and Appl., v. 54, p. 461-472, 2013. (pdf)

29. FERREIRA, O. P.; IUSEM, A. N.; NÉMETH, S. Z. . Projections onto convex sets on the sphere. J. Global Optim., v. 57, p. 663-676, 2013. (pdf).


28. FERREIRA, O. P. ; SILVA, R. C. M. . Local convergence of Newton's method under a majorant condition in Riemannian manifolds. IMA J. Num. Anal., v. 32, n. 4, p.1696-1713, 2012. (pdf).

27. FERREIRA, O. P. ; NEMETH, S. Z. . Generalized isotone projection cones. Optimization,  v. 61, n. 9, p. 1087-1098,  2012. (pdf).

26. BENTO, G. C. ; FERREIRA, O. P. ; OLIVEIRA, P. R. . Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds. J. Optim. Theory Appl., v.154, n.1, p. 88-107, 2012. (pdf).

25. FERREIRA, O. P. ; SVAITER, B. F. . A robust Kantorovich s theorem on inexact Newton method with relative residual error tolerance. J. Complexity, v. 28, n. 3, p.346–363, 2012. (pdf).

24. FERREIRA, O. P. ; NEMETH, S. Z. . Generalized projections onto convex sets. J. Global Optim.,  v. 52, n. 4, p. 831-842,  2012. (pdf).

23. FERREIRA, O. P. ; GONÇALVES, M. L. N. ; OLIVEIRA, P. R. . Local convergence analysis of inexact Gauss Newton like methods under majorant condition. J. Comput. Appl. Math., v. 236, p. 2487-2498, 2012. (pdf).


22. FERREIRA, O. P. ; GONÇALVES, M. L. N. ; OLIVEIRA, P. R. . Local convergence analysis of the Gauss Newton method under a majorant condition. J. Complexity, v. 27, p. 111-125, 2011. (pdf).

21. FERREIRA, O. P. . Local convergence of Newton's method under majorant condition. J. Comput. Appl. Math., v. 235, p. 1515-1522, 2011. (pdf).

20. FERREIRA, O. P. ; GONÇALVES, M. L. N. . Local convergence analysis of inexact Newton-like methods under majorant condition. Comput. Optim. and Appl., v. 48, p. 1-21, 2011. (pdf).


19. BENTO, G. C. ; FERREIRA, O. P. ; OLIVEIRA, P. R. . Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Analysis, v. 73, p. 564-572, 2010. (pdf).


18. FERREIRA, O. P. . Local convergence of Newton's method in Banach space from the viewpoint of the majorant principle.. IMA J. Num. Anal., v. 29, p. 746-759, 2009. (pdf).

17. FERREIRA, O. P. ; SVAITER, B. F. . Kantorovich s majorants principle for Newton s method. Comput. Optim. and Appl., v. 42, p. 213-229, 2009. (pdf).

16. FERREIRA, O. P. ; OLIVEIRA, P. R. ; SILVA, R. C. M. . On the convergence of the entropy-exponential penalty trajectories and generalized proximal point methods in semidefinite optimization. J. Global Optim., v. 45, p. 211-227, 2009. (pdf).


15. FERREIRA, O. P. . Dini Derivative and a Characterization for Lipschitz and Convex Functions on Riemannian Manifolds. Nonlinear Analysis, v. 68, p. 1517-1528, 2008. (pdf).

14. CRUZ NETO, J. X. ; FERREIRA, O. P. ; OLIVEIRA, P. R. ; SILVA, R. C. M. . Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian Manifolds. J. Optim. Theory Appl., v. 139, p. 227-242, 2008. (pdf).


13. CRUZ NETO, J. X. ; FERREIRA, O. P. ; IUSEM, A. N. ; MONTEIRO, R. D. C. . Dual convergence of the proximal point method with Bregman distances for linear programming. Optim. Methods Softw., v. 22, p. 339-360, 2007. (pdf).


12. FERREIRA, O. P. . Convexity with Respect to a Differential Equation. J. Math. Anal. Appl., v. 315, n. 2, p. 626-641, 2006. (pdf).

11. FERREIRA, O. P. . The Proximal Subgradient and a Characterization of Lipschitz Functions in Riemannian Manifolds. J. Math. Anal. Appl., v. 313, p. 587-597, 2006. (pdf).

10. CRUZ NETO, J. X. ; FERREIRA, O. P. ; LUCÂMBIO PEREZ, L. R. ; NEMETH, S. Z. . Convex- and Monotone-Transformable Math. Program. Problems and a Proximal-Like Point Method. J. Global Optim., v. 35, n. 1, p. 53-69, 2006. (pdf).


9. CRUZ NETO, J. X. ; FERREIRA, O. P. ; MONTEIRO, R. D. C. . Asymptotic behavior of the central path for a special class of degenerate SDP problems. Math. Program., v. 103, n. 3, p. 487-514, 2005. (pdf).

8. FERREIRA, O. P. ; LUCÂMBIO PEREZ, L. R. ; NEMETH, S. Z. . Singularities of monotone vector fields and extragradient-type algorithm. J. Global Optim.,  v. 31, n. 1, p. 133-151, 2005. (pdf).


7. FERREIRA, O. P. ; SVAITER, B. F. . Kantorovich's Theorem on Newton's Method in Riemannian Manifolds. J. Complexity, v. 18, p. 304-329, 2002. (pdf).

6. CRUZ NETO, J. X. ; FERREIRA, O. P. ; LUCÂMBIO PEREZ, L. R. . Contribution To The Study Of Monotone Vector Field. Acta Math. Hungar., v. 94, n. 4, p. 307-320, 2002. (pdf).

5. FERREIRA, O. P. ; OLIVEIRA, P. R. . Proximal Point Algorithm on Riemannian Manifolds. Optimization, v. 51, n. 2, p. 257-270, 2002. (pdf).


4. CRUZ NETO, J. X. ; FERREIRA, O. P. ; LUCÂMBIO PEREZ, L. R. . Monotone Point-to-Set Vector Field. Balkan J. Geom. Appl., v. 5, n. 1, p. 69-79, 2000. (pdf).

3. CRUZ NETO, J. X. ; FERREIRA, O. P. . q-Quadratic Convergence on Newton's Method From Data at One Point. Int. J. Appl. Math., v. 3, n. 4, p. 441-447, 2000. (pdf).


2. CRUZ NETO, J. X. ; FERREIRA, O. P. ; LUCÂMBIO PEREZ, L. R. . A Proximal Regularization of the Steepest Descent Method in Riemannian Manifolds. Balkan J. Geom. Appl.,  v. 4, n. 2, p. 1-8, 1999. (pdf).


1. FERREIRA, O. P. ; OLIVEIRA, P. R. . Subgradient Algorithm Algorithm on Riemannian Manifolds. J. Optim. Theory Appl., v. 97, n. 1, p. 93-104, 1998. (pdf).



Chapter of Books

1. FERREIRA, O. P; LOUZEIRO, M. S.; PRUDENTE, L. F.. First Order Methods for Optimization on Riemannian Manifolds, Handbook of Variational Methods for Nonlinear Geometric Data,  p. 499-525, 2020.



Expository Articles 

4. FERREIRA, O. P. ; FRANÇA, G. A.; LEMES, M. V. ; Introdução a otimização de portfólio, (in Portuguese),  2022. (pdf).

3. FERREIRA, O. P. ; PIRES, D. A. S. ; Newton method with Geogebra, 2021. (pdf). Geogebra Link 

2. BARRIOS, J. G. ; FERREIRA, O. P.; NÉMETH, S. Z.  A semi-smooth Newton method for solving convex quadratic programming problem under simplicial cone constraint, 2015. (pdf). MATLAB_codes

1. FERREIRA, O. P. ; SVAITER, B. F. ; Kantorovich's s theorem on  Newton's method, 2012. (pdf).



Ph. D. Thesis

FERREIRA, O. P. Programação Matemática em Variedades Riemannianas: Algoritmos Subgradiente e Ponto Proximal, (in Portuguese),  1997. Thesis - Universidade Federal do Rio de Janeiro. Advisor: Paulo Roberto Oliveira.